img
img
SOLUTION OF A MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEM HAVING ROUGH INTERVAL COEFFICIENTS USING ZERO-SUM GAME    
Yazarlar (1)
Dr. Öğr. Üyesi Gizem Temelcan ERGENECOŞAR Dr. Öğr. Üyesi Gizem Temelcan ERGENECOŞAR
Beykoz Üniversitesi, Türkiye
Devamını Göster
Özet
In this paper, a set of compromise solutions is found for the multi-objective linear programming with rough interval coefficients (MOLPRIC) problem by proposing a two-phased algorithm. In the first phase, the MOLPRIC problem is separated into single-objective LPRIC problems considering the number of objective functions, and the rough optimal solution of each LPRIC problem is found. In the second phase, a zero-sum game is applied to find the rough optimal solution. Generally, the weighted sum method is used for determining the trade-off weights between the objective functions. However, it is quite inapplicable when the number of objective functions increases. Thus, the proposed algorithm has an advantage such that it provides an easy implementation for the MOLPRIC problems having more than two objective functions. With this motivation, applying a zero-sum game among the distinct objective values yields different compromise solutions.
Anahtar Kelimeler
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayınlanan tam makale
Dergi Adı İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi
Dergi ISSN 1305-7820
Dergi Tarandığı Indeksler TR DİZİN
Makale Dili Türkçe
Basım Tarihi 06-2024
Cilt No 23
Sayı 45
Sayfalar 97 / 113
DOI Numarası 10.55071/ticaretfbd.1447939
Makale Linki http://dx.doi.org/10.55071/ticaretfbd.1447939