img
img
Data Augmentation with ChatGPT for Text to Sign Language Gloss Translation  
Yazarlar (1)
Dr. Öğr. Üyesi Senem TANBERK Dr. Öğr. Üyesi Senem TANBERK
Huawei R&D İstanbul, Türkiye
Devamını Göster
Özet
In recent years, despite data limitations, sign language studies have attracted researchers' attention. For translating between spoken language and sign language gloss, which is considered a machine translation problem, data augmentation and state-of-the-art techniques have been proposed to overcome poor performance caused by data scarcity. This study focused on data augmentation for American Sign Language and British Sign Language using custom instructions ChatGPT4.0. Two different data selection methods were proposed to guide ChatGPT-4.0 in data generation. After data augmentation, the M2M100-418M model was fine-tuned on the original and augmented dataset. Experiments on the test data show that our method improves text-to-gloss translation performance.
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2024 International Conference on Emerging eLearning Technologies and Applications (ICETA)
Kongre Tarihi 24-10-2024 / 24-10-2024
Basıldığı Ülke Türkiye
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 2

Paylaş