img
img
Ensemble Learning with CNN--LSTM Combination for Speech Emotion Recognition  
Yazarlar (2)
Dr. Öğr. Üyesi Senem TANBERK Dr. Öğr. Üyesi Senem TANBERK
Orion TR, Türkiye
Dilek Bilgin Tükel
Doğuş Üniversitesi, Türkiye
Devamını Göster
Özet
Speech plays the most significant role in communication between people. The voice enables a speaker’s unique characteristics to be mapped with biometric properties as well as carrying emotions. Emotion contains many non-linguistic signals to express ourselves as humans. Emotion recognition in human speech is a challenging task in different applications in fields such as healthcare, services, telecommunications, video conferencing, and human–computer interaction (HCI). Deep learning techniques are becoming a significant focus in recent research in the speech emotion recognition (SER) domain. In this paper, we present an ensemble learning approach based on various combinations of CNN and LSTM networks to address the limitations of the existing SER models. The proposed system is evaluated using the RAVDESS dataset. More specifically, the LSTM, CNN, and CNN and LSTM models achieved an …
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı Proceedings of International Conference on Computing and Communication Networks: ICCCN 2021
Kongre Tarihi 19-08-2022 / 19-08-2022
Basıldığı Ülke Türkiye
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 4

Paylaş