img
img
Software Log Classification in Telecommunication Industry  
Yazarlar (1)
Dr. Öğr. Üyesi Senem TANBERK Dr. Öğr. Üyesi Senem TANBERK
Orion TR, Türkiye
Devamını Göster
Özet
Software system admins depend on log data for understanding system behavior, monitoring anomalies, tracking software bugs, and malfunctioning detection. Log analysis based on machine learning techniques enables to transform of raw logs into meaningful information that helps the DevOps team and administrators to solve problems. Al ensures to group similar logs together and keeps periodic logs more organized and sorted, allowing us to get to where we need to look faster. In this paper, we present a log classification system on log data generated by VoIP (Voice over Internet Protocol) soft-switch product. In this way, we targeted to detect the problem, direct it to the relevant department, allocate resources, and solve software bugs faster and more efficiently. Machine learning algorithms such as Linear Classifiers, Support Vector Machines, Decision Tree, Random Forest, Boosting, K-Nearest Neighbors, and …
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2021 6th International Conference on Computer Science and Engineering (UBMK)
Kongre Tarihi 15-09-2021 / 15-09-2021
Basıldığı Ülke Türkiye
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 4

Paylaş