img
img
Neural network-based approaches for predicting query response times       
Yazarlar (3)
Elif Yusufoğlu
Murat Ayyıldız
Tubıtak Marmara Research Center, Türkiye
Prof. Dr. Ensar GÜL Prof. Dr. Ensar GÜL
Maltepe Üniversitesi, Türkiye
Devamını Göster
Özet
Query response time prediction is an important and challenging problem in database systems. Especially for applications which handle large amounts of data or where time loss and deadlocks are hardly tolerated, it is very useful to predict the query response times before actual execution. This paper aims to predict query response times automatically using neural network-based approaches, and compares these approaches in terms of training time and accuracy. We implemented three methods based on artificial neural networks, and compared these methods using the TPC-DS benchmark database on Microsoft SQL Server. This study shows that two of our methods, multilayer perceptron with back-propagation and small-world network methods, present accurate results in predicting query response times within acceptable training times.
Anahtar Kelimeler
neural nets | database management | query response time prediction
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Web of Science Kapsamındaki Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2014 International Conference on Data Science and Advanced Analytics (DSAA)
Kongre Tarihi 30-10-2014 / 01-11-2014
Basıldığı Ülke
Basıldığı Şehir Shanghai, China