img
img
Resume Matching Framework via Ranking and Sorting Using NLP and Deep Learning  
Yazarlar (4)
Senem Tanberk
Selahattin Serdar Helli
Ege Kesim
Sena Nur Cavsak
Devamını Göster
Özet
Online job search through websites has been a remarkably advantageous tool for both job seekers and employers, effectively serving their needs for numerous years. The job-resume matching system uses natural language processing (NLP) techniques to analyze the content of resumes and job descriptions. In this study, we used AI models to analyze resumes and rank each resume based on its similarity to the job description. This proposed framework uses optical character recognition and object recognition models to detect text and sections from resumes. Afterward, the text preprocessing step is applied. The preprocessed section is classified with the BERT model. The section of resumes classified into 5 different categories (education, experience, skills, personal, and language) are sent to the information extraction module. By using the named entity recognition method, the module identifies 8 different …
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2023 8th International Conference on Computer Science and Engineering (UBMK)
Kongre Tarihi 13-09-2023 / 13-09-2023
Basıldığı Ülke Türkiye
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 6
Resume Matching Framework via Ranking and Sorting Using NLP and Deep Learning

Paylaş